Tsunami earthquakes possibly widespread manifestations of frictional conditional stability
نویسندگان
چکیده
[1] Tsunami earthquakes, shallow events that produce larger tsunamis than expected given their surface wave magnitudes (Ms), typically have long durations and a source spectrum depleted in short period energy. Seven cases of underthrusting tsunami earthquakes provide information on the rupture processes, but little constraint on geographic distribution or frequency. We compare their rupture characteristics with smaller magnitude earthquakes on circum-Pacific interplate thrust faults. Comparable moment release time histories are found for large tsunami earthquakes and for many smaller shallow subduction zone earthquakes, with significantly longer durations and additional source complexity than for events deeper than 15 km. Thus, very shallow interplate earthquake ruptures are scale invariant, with variable frictional properties on the plate interface controlling the depth dependent rupture process. Widespread occurrence of small shallow interplate earthquakes with long durations suggests that many subduction faults have frictional properties that may enable large tsunamigenerating earthquakes to occur; fortunately, large shallow ruptures are infrequent.
منابع مشابه
Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures
Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest meg...
متن کاملA self-consistent mechanism for slow dynamic deformation and large tsunami generation for earthquakes in the shallow subduction zone
[1] Dynamic pore pressure changes in the overriding wedge above a shallow-dipping plate interface significantly affect the rupture dynamics of shallow subduction zone earthquakes and their tsunamigenesis. For a wedge on the verge of Coulomb failure everywhere including the basal fault, the dynamic pore pressure increase due to up-dip rupture propagation leads to widespread yielding within the w...
متن کاملRupture characteristics of major and great (Mw≥7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence
Depth-varying characteristics of high-frequency seismic radiation for megathrust earthquakes have been inferred from several recent giant earthquakes and large tsunami earthquakes. To quantify any depth dependence more extensively, we analyzed 114 Mw ≥ 7.0 thrust-faulting earthquakes with centroid depths from 5 to 55 km on circum-Pacific megathrusts using teleseismic body wave finite-fault inve...
متن کاملThermal considerations in inferring frictional heating from vitrinite reflectance and implications for shallow coseismic slip within the Nankai Subduction Zone
Frictional properties within the upper few kilometers of subduction zones are generally thought to inhibit rupture propagation. Understanding whether large rapid slip propagates to the surface during megathrust earthquakes is important for characterizing tsunami hazard. Recent vitrinite reflectance analysis by Sakaguchi et al. (2011) on cores from the NanTroSEIZE drilling transect at the Nankai...
متن کاملFar-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean
S U M M A R Y We evaluate far-field tsunami hazard in the Indian Ocean Basin based on hydrodynamic simulations of ten case studies of possible mega earthquakes at the major seismic zones surrounding the basin. They represent worst-case scenarios of seismic rupture along the full extent of seismogenic faults having supported large earthquakes in the historical record. In a series of numerical ex...
متن کامل